Adaptive and Non-adaptive Distribution Functions for DSA
نویسندگان
چکیده
Distributed hill-climbing algorithms are a powerful, practical technique for solving large Distributed Constraint Satisfaction Problems (DSCPs) such as distributed scheduling, resource allocation, and distributed optimization. Although incomplete, an ideal hill-climbing algorithm finds a solution that is very close to optimal while also minimizing the cost (i.e. the required bandwidth, processing cycles, etc.) of finding the solution. The Distributed Stochastic Algorithm (DSA) is a hill-climbing technique that works by having agents change their value with probability p when making that change will reduce the number of constraint violations. Traditionally, the value of p is constant, chosen by a developer at design time to be a value that works for the general case, meaning the algorithm does not change or learn over the time taken to find a solution. In this paper, we replace the constant value of p with different probability distribution functions in the context of solving graph-coloring problems to determine if DSA can be optimized when the probability values are agent-specific. We experiment with non-adaptive and adaptive distribution functions and evaluate our results based on the number of violations remaining in a solution and the total number of messages that were exchanged.
منابع مشابه
Application of Non-Linear Functions at Distribution of Output SINR Gaussian Interference Channels
We have examined the convergence behavior of the LSCMA in some simple environments. Algorithms such as Multi¬ Target CMA, Multistage CMA, and Iterative Least Squares with Projection can be used for this purpose. The results presented here can form a basis for analysis of these multi-signal extraction techniques. Clearly, the variance and distribution of output SINR obtained with the LSCMA is al...
متن کاملThe Time Adaptive Self Organizing Map for Distribution Estimation
The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...
متن کاملAdaptive Unstructured Grid Generation Scheme for Solution of the Heat Equation
An adaptive unstructured grid generation scheme is introduced to use finite volume (FV) and finite element (FE) formulation to solve the heat equation with singular boundary conditions. Regular grids could not acheive accurate solution to this problem. The grid generation scheme uses an optimal time complexity frontal method for the automatic generation and delaunay triangulation of the grid po...
متن کاملA SOLUTION TO AN ECONOMIC DISPATCH PROBLEM BY A FUZZY ADAPTIVE GENETIC ALGORITHM
In practice, obtaining the global optimum for the economic dispatch {bf (ED)}problem with ramp rate limits and prohibited operating zones is presents difficulties. This paper presents a new andefficient method for solving the economic dispatch problem with non-smooth cost functions using aFuzzy Adaptive Genetic Algorithm (FAGA). The proposed algorithm deals with the issue ofcontrolling the ex...
متن کاملAdaptive Consensus Control for a Class of Non-affine MIMO Strict-Feedback Multi-Agent Systems with Time Delay
In this paper, the design of a distributed adaptive controller for a class of unknown non-affine MIMO strict-feedback multi agent systems with time delay has been performed under a directed graph. The controller design is based on dynamic surface control method. In the design process, radial basis function neural networks (RBFNNs) were employed to approximate the unknown nonlinear functions. S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010